Proteomic Analysis of Plant Cell Nuclei
Purified by Flow Sorting

Beáta Petrovská¹, Hana Jeřábková¹, Ivo Chamrád², Jan Vrána¹, René Lenobel³, Jana Uřínovská², Marek Šebela², and Jaroslav Doleşl¹

¹ Centre of Plant Structural and Functional Genomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Šlechtitěla 31, CZ-783 71 Olomouc, Czech Republic
² Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic

SUMMARY

Many proteins are involved in maintaining nuclear organization, gene expression and nuclear and cell division. However, except for histones and a few other nuclear proteins, only a fraction of these proteins is known in plants. The plant nuclear proteome has not been well explored yet. Biochemical composition of plant sub-cellular components may be altered during their isolation and during subsequent protein purification. The conventional multi-step fractionation procedure is both laborious and liable to contamination. We have developed a single step method based on flow sorting. The method allows purification of G1, S and G2 phase nuclei, and minimizes the risk of contamination by non-nuclear proteins. Preliminary results obtained using G1 phase barley root tip cell nuclei indicate that flow sorting coupled with a protein/peptide separation and mass spectrometry will permit a comprehensive characterization of the plant nuclear proteome.

AIM OF THE STUDY

I. Developing a new protocol for purification of plant nuclei
 - More efficient (identification of as yet unknown plant nuclear proteins),
 - More sensitive (low abundance proteins),
 - Less time consuming (avoiding mechanical homogenization of tissues, filtration, nuclei solubilization, separation on a density gradient),
 - Not altering nuclear proteins,
 - Avoiding contamination by non-nuclear proteins.

II. Identification of the plant nuclear proteins

1. Sample preparation
 - 1. barley seedlings
 - 2. mild fixation of roots in formaldehyde
 - 3. dissection of root tips
 - 4. release of nuclei to LB01 buffer by mechanical homogenization

2. Flow cytometric sorting
 - Provides the opportunity to study nuclear proteome in different phases of cell cycle
 - 5 million of sorted nuclei for protein/peptide separation and MS
 - Sorting: 200 nuclei/sec >> 5 million nuclei sorted from 12 samples in ~180 min

3. Proteomic analyses
 - DIA digestion in a lysis buffer
 - In-gel digestion
 - Protein separation
 - Separation by reversed-phase nanoLC
 - NanolC-ESI-MS and MS/MS
 - NanolC-MALDI-MS and MS/MS

CONCLUSION

- Proteomic analysis is feasible using flow sorted population of plant cell nuclei.
- Coupling FCM, protein/peptide separation and MS provides an elegant and powerful means to determine the composition of nuclear proteome at defined phases of the cell cycle.
- Our approach can be extended further to studying the chromosomal proteome.

This research was supported by grants from the Czech Science Foundation (14-28449S, P503/12/G090), the National Program of Sustainability (LO1204), the European Social Fund (Operational Program Education for Competitiveness CZ.1.07/2.3.00/20.0165), and Internal Grant Agency of Palacký University, Olomouc (Pf/2013/003).